Lovera, F. A. & Cardinale, Y.
17 Rev. Cient. Sist. Inform. 3(1): e418; (Ene-Jun, 2023). e-ISSN: 2709-992X
Journal of Computer and Information Engineering, 14(12), 473–485.
https://publications.waset.org/10011630/a-survey-of-sentiment-analysis-based-on-deep-learning
Liu, B. (2010). Sentiment analysis and subjectivity. Handbook of Natural Language Processing, Second
Edition, 2, 627–666. https://www.cs.uic.edu/~liub/FBS/NLP-handbook-sentiment-analysis.pdf
Lovera, F. A., Cardinale, Y. C., & Homsi, M. N. (2021). Sentiment Analysis in Twitter Based on Knowledge
Graph and Deep Learning Classification. Electronics, 10(22), 2739.
https://doi.org/10.3390/electronics10222739
Lunt, M. (2015). Introduction to statistical modelling: linear regression. Rheumatology, 54(7), 1137–1140.
https://doi.org/10.1093/rheumatology/ket146
Martínez Cámara, E., Rodríguez Barroso, N., Moya, A. R., Fernández, J. A., Romero, E., & Herrera, F. (2019).
Deep Learning Hyper-parameter Tuning for Sentiment Analysis in Twitter based on Evolutionary
Algorithms. 255–264. https://doi.org/10.15439/2019F183
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations ofwords and
phrases and their compositionality. Advances in Neural Information Processing Systems, 1–10.
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
Mirtalaie, M. A., Hussain, O. K., Chang, E., & Hussain, F. K. (2018). Sentiment Analysis of Specific Product’s
Features Using Product Tree for Application in New Product Development. In Advances in Intelligent
Networking and Collaborative Systems (8th ed., pp. 82–95). Springer. https://doi.org/10.1007/978-
3-319-65636-6_8
Mostafa, M. M. (2013). More than words: Social networks’ text mining for consumer brand sentiments.
Expert Systems with Applications, 40(10), 4241–4251. https://doi.org/10.1016/j.eswa.2013.01.019
Oliveira, D. J. S., Bermejo, P. H. de S., & dos Santos, P. A. (2017). Can social media reveal the preferences of
voters? A comparison between sentiment analysis and traditional opinion polls. Journal of
Information Technology & Politics, 14(1), 34–45. https://doi.org/10.1080/19331681.2016.1214094
Plisson, J., Lavrac, N., & Mladenić, D. D. (2004). A rule based approach to word lemmatization. Proceedings
of the 7th International Multiconference Information Society (IS’04), 83–86. http://eprints.pascal-
network.org/archive/00000715/
Ribeiro, F. N., Araújo, M., Gonçalves, P., André Gonçalves, M., & Benevenuto, F. (2016). SentiBench - a
benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Science, 5(1),
23. https://doi.org/10.1140/epjds/s13688-016-0085-1
Tabinda Kokab, S., Asghar, S., & Naz, S. (2022). Transformer-based deep learning models for the
sentiment analysis of social media data. Array, 14, 100157.
https://doi.org/10.1016/j.array.2022.100157
Wu, Y., Zhang, Q., Huang, X., & Wu, L. (2011). Structural opinion mining for graph-based sentiment
representation. Empirical Methods in Natural Language Processing, 1332–1341.
https://aclanthology.org/D11-1123.pdf
Xu, S. (2018). Bayesian Naïve Bayes classifiers to text classification. Journal of Information Science, 44(1),
48–59. https://doi.org/10.1177/0165551516677946
Yujian, L., & Bo, L. (2007). A Normalized Levenshtein Distance Metric. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(6), 1091–1095. https://doi.org/10.1109/TPAMI.2007.1078
Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. WIREs Data Mining
and Knowledge Discovery, 8(4). https://doi.org/10.1002/widm.1253