Lescano-Delgado, M.
11 Rev. Cient. Sist. Inform. 3(1): e494; (Ene-Jun, 2023). e-ISSN: 2709-992X
Combination of E-Commerce Big Data. Complexity, 2020. https://doi.org/10.1155/2020/6685888
Lois, P., Drogalas, G., Karagiorgos, A., & Tsikalakis, K. (2020). Internal audits in the digital era:
opportunities risks and challenges. EuroMed Journal of Business, 15(2), 205–217.
https://doi.org/10.1108/EMJB-07-2019-0097
Lokanan, M. (2022). The determinants of investment fraud: A machine learning and artificial intelligence
approach. Frontiers in Big Data, 5. https://doi.org/10.3389/fdata.2022.961039
Maçãs, C., Polisciuc, E., & Machado, P. (2022). ATOVis – A visualisation tool for the detection of financial
fraud. Information Visualization, 21(4), 371–392. https://doi.org/10.1177/14738716221098074
Mahbub, S., Pardede, E., & Kayes, A. S. M. (2022). Online Recruitment Fraud Detection: A Study on
Contextual Features in Australian Job Industries. IEEE Access, 10, 82776–82787.
https://doi.org/10.1109/ACCESS.2022.3197225
Mani, V., Prakash, M., & Lai, W. C. (2022). Cloud-based blockchain technology to identify counterfeits.
Journal of Cloud Computing, 11(1). https://doi.org/10.1186/s13677-022-00341-2
Murorunkwere, B. F., Tuyishimire, O., Haughton, D., & Nzabanita, J. (2022). Fraud Detection Using Neural
Networks: A Case Study of Income Tax. Future Internet, 14(6). https://doi.org/10.3390/fi14060168
Nesvijevskaia, A., Ouillade, S., Guilmin, P., & Zucker, J.-D. (2021). The accuracy versus interpretability
trade-off in fraud detection model. Data and Policy, 3(7). https://doi.org/10.1017/dap.2021.3
Ng, K. K. H., Chen, C.-H., Lee, C. K. M., Jiao, J. (Roger), & Yang, Z.-X. (2021). A systematic literature review on
intelligent automation: Aligning concepts from theory, practice, and future perspectives. Advanced
Engineering Informatics, 47, 101246. https://doi.org/10.1016/j.aei.2021.101246
Omair, B., & Alturki, A. (2020). Multi-dimensional fraud detection metrics in business processes and their
application. International Journal of Advanced Computer Science and Applications, 11(9), 570–586.
https://doi.org/10.14569/IJACSA.2020.0110968
Petrariu, I., Moscaliuc, A., Turcu, C. E., & Gherman, O. (2022). A Comparative Study of Unsupervised
Anomaly Detection Algorithms used in a Small and Medium-Sized Enterprise. International Journal
of Advanced Computer Science and Applications, 13(9), 931–940.
https://doi.org/10.14569/IJACSA.2022.01309108
Ponce, E. K., Sanchez, K. E., & Andrade-Arenas, L. (2022). Implementation of a Web System: Prevent Fraud
Cases in Electronic Transactions. International Journal of Advanced Computer Science and
Applications, 13(6), 865–876. https://doi.org/10.14569/IJACSA.2022.01306102
Pranto, T. H., Hasib, K. T. A. M., Rahman, T., Haque, A. B., Islam, A. K. M. N., & Rahman, R. M. (2022).
Blockchain and Machine Learning for Fraud Detection: A Privacy-Preserving and Adaptive Incentive
Based Approach. IEEE Access, 10, 87115–87134. https://doi.org/10.1109/ACCESS.2022.3198956
RB, A., & KR, S. K. (2021). Credit card fraud detection using artificial neural network. Global Transitions
Proceedings, 2(1), 35–41. https://doi.org/10.1016/j.gltp.2021.01.006
Reim, W., Åström, J., & Eriksson, O. (2020). Implementation of Artificial Intelligence (AI): A Roadmap for
Business Model Innovation. AI, 1(2), 180–191. https://doi.org/10.3390/ai1020011
Rubaidi, Z. S., Ammar, B. B., & Aouicha, M. B. (2022). Fraud Detection Using Large-scale Imbalance
Dataset. International Journal on Artificial Intelligence Tools, 31(8).
https://doi.org/10.1142/S0218213022500373
Sarno, R., Sinaga, F., & Sungkono, K. R. (2020). Anomaly detection in business processes using process
mining and fuzzy association rule learning. Journal of Big Data, 7(1).