Guevara-Fernandez, A. & Coral-Ygnacio, M. A.
18 Rev. Cient. Sist. Inform. 3(2): e557; (Jul-Dic, 2023). e-ISSN: 2709-992X
Kumar Sharma, A., Bajpai, B., Adhvaryu, R., Dhruvi Pankajkumar, S., Parthkumar Gordhanbhai, P., &
Kumar, A. (2023). An Efficient Approach of Product Recommendation System using NLP Technique.
Materials Today: Proceedings, 80, 3730–3743. https://doi.org/10.1016/j.matpr.2021.07.371
Li, M., Li, Y., Lou, W., & Chen, L. (2020). A hybrid recommendation system for Q&A documents. Expert
Systems with Applications, 144, 113088. https://doi.org/10.1016/j.eswa.2019.113088
Liu, H., Zhao, J., Li, P., Zhao, P., & Wu, X. (2021). Shared-view and specific-view information extraction for
recommendation. Expert Systems with Applications, 186, 115752.
https://doi.org/10.1016/j.eswa.2021.115752
Luque-Ortiz, S. (2021). Estrategias de marketing digital utilizadas por empresas del retail deportivo.
Revista CEA, 7(13), 0–22. https://doi.org/10.22430/24223182.1650
Marín López, J. C., & López Trujillo, M. (2020). Análisis de datos para el marketing digital emprendedor:
Caso de estudio Parque de Innovación Empresarial - Universidad Nacional sede Manizales. Revista
Universidad y Empresa, 22(38), 65.
https://doi.org/10.12804/revistas.urosario.edu.co/empresa/a.7135
Martinez Rodriguez, J. R., & Alarcón Martínez, G. J. (2020). Análisis de la flexibilidad del proveedor y la
participación de abastecimientos en el desempeño de manufactura para el sector de
electrodomésticos (Analysis of supplier flexibility and purchasing participation in the manufacturing
performance for applianc. Revista Innovaciones de Negocios, 17(33), 98–127.
https://doi.org/10.29105/rinn17.33-6
Mlika, F., & Karoui, W. (2020). Proposed Model to Intelligent Recommendation System based on Markov
Chains and Grouping of Genres. Procedia Computer Science, 176, 868–877.
https://doi.org/10.1016/j.procs.2020.09.082
Ni, L., Lin, H., Zhang, M., & Zhang, J. (2018). Hybrid Filtrations Recommendation System based on Privacy
Preserving in Edge Computing. Procedia Computer Science, 129, 407–409.
https://doi.org/10.1016/j.procs.2018.03.016
Ravnik, J., Jovanovac, J., Trupej, A., Vištica, N., & Hriberšek, M. (2021). A sigmoid regression and artificial
neural network models for day-ahead natural gas usage forecasting. Cleaner and Responsible
Consumption, 3, 100040. https://doi.org/10.1016/j.clrc.2021.100040
Sánchez, N. (2019). Línea Blanca en auge, de la mano de la innovación y la eficiencia. Electromarket.
https://www.electromarket.com/uploads/2019/08/linea_blanca_auge_19618_20190801014454.p
df
Ullal, M. S., Hawaldar, I. T., Soni, R., & Nadeem, M. (2021). The Role of Machine Learning in Digital
Marketing. SAGE Open, 11(4), 215824402110503. https://doi.org/10.1177/21582440211050394
Uribe, C. I., & Sabogal Neira, D. F. (2021). Marketing digital en micro y pequeñas empresas de publicidad
de Bogotá. Revista Universidad y Empresa, 23(40).
https://doi.org/10.12804/revistas.urosario.edu.co/empresa/a.8730
Ye, G., & Zhao, X. (2018). Improved SVD algorithm based on Slope One. Proceedings of the 30th Chinese
Control and Decision Conference, CCDC 2018, 1, 1002–1006.
https://doi.org/10.1109/CCDC.2018.8407276
Zhang, F., Qi, S., Liu, Q., Mao, M., & Zeng, A. (2020). Alleviating the data sparsity problem of recommender
systems by clustering nodes in bipartite networks. Expert Systems with Applications, 149, 113346.
https://doi.org/10.1016/j.eswa.2020.113346