Huanatico-Lipa, J. C. & Coral-Ygnacio, M. A.
17 Rev. Cient. Sist. Inform. 4(1): e590; (Ene-Jun, 2024). e-ISSN: 2709-992X
https://doi.org/10.1016/j.compbiomed.2023.106606
He, S., Feng, Y., Grant, P. E., & Ou, Y. (2023). Segmentation ability map: Interpret deep features for medical
image segmentation. Medical Image Analysis, 84(December 2022), 102726.
https://doi.org/10.1016/j.media.2022.102726
Islam, M. M., Yang, H. C., Poly, T. N., Jian, W. S., & (Jack) Li, Y. C. (2020). Deep learning algorithms for
detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-
analysis. Computer Methods and Programs in Biomedicine, 191, 1–16.
https://doi.org/10.1016/j.cmpb.2020.105320
Jaisakthi, S. M., Mirunalini, P., Aravindan, C., & Appavu, R. (2022). Classification of skin cancer from
dermoscopic images using deep neural network architectures. Multimedia Tools and Applications,
15763–15778. https://doi.org/10.1007/s11042-022-13847-3
Jiji, G. W., Rajesh, A., & Raj, P. J. D. (2021). CBI + R: A Fusion Approach to Assist Dermatological Diagnoses.
International Journal of Image and Graphics, 21(1). https://doi.org/10.1142/S0219467821500054
Karri, M., Annavarapu, C. S. R., & Acharya, U. R. (2023). Skin lesion segmentation using two-phase cross-
domain transfer learning framework. Computer Methods and Programs in Biomedicine, 231.
https://doi.org/10.1016/j.cmpb.2023.107408
Kosgiker, G. M., Deshpande, A., & Kauser, A. (2021). SegCaps: An efficient SegCaps network-based skin
lesion segmentation in dermoscopic images. International Journal of Imaging Systems and
Technology, 31(2), 874–894. https://doi.org/10.1002/ima.22545
Kumar, K. S., Suganthi, N., Muppidi, S., & Kumar, B. S. (2022). FSPBO-DQN: SeGAN based segmentation and
Fractional Student Psychology Optimization enabled Deep Q Network for skin cancer detection in
IoT applications. Artificial Intelligence in Medicine, 129(October 2021), 102299.
https://doi.org/10.1016/j.artmed.2022.102299
La Salvia, M., Torti, E., Leon, R., Fabelo, H., Ortega, S., Martinez-Vega, B., Callico, G. M., & Leporati, F. (2022).
Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in
Healthcare: A Skin Cancer Application. Sensors, 22(16). https://doi.org/10.3390/s22166145
Lai, H., Fu, S., Zhang, J., Cao, J., Feng, Q., Lu, L., & Huang, M. (2022). Prior Knowledge-Aware Fusion
Network for Prediction of Macrovascular Invasion in Hepatocellular Carcinoma. IEEE Transactions
on Medical Imaging, 41(10), 2644–2657. https://doi.org/10.1109/TMI.2022.3167788
Lan, Z., Cai, S., He, X., & Wen, X. (2022). FixCaps: An Improved Capsules Network for Diagnosis of Skin
Cancer. IEEE Access, 10(May), 76261–76267. https://doi.org/10.1109/ACCESS.2022.3181225
Lei, J., Yang, G., Wang, S., Feng, Z., & Liang, R. (2023). Category-aware feature attribution for Self-
Optimizing medical image classification. Displays, 77(February), 102397.
https://doi.org/10.1016/j.displa.2023.102397
Li, S., Xie, Y., Wang, G., Zhang, L., & Zhou, W. (2022). Attention guided discriminative feature learning and
adaptive fusion for grading hepatocellular carcinoma with Contrast-enhanced MR. Computerized
Medical Imaging and Graphics, 97(February), 102050.
https://doi.org/10.1016/j.compmedimag.2022.102050
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P.
J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and
meta-analyses of studies that evaluate health care interventions: explanation and elaboration. In
Journal of clinical epidemiology (Vol. 62, Issue 10). https://doi.org/10.1016/j.jclinepi.2009.06.006
Liu, Z., Xiong, R., & Jiang, T. (2023). CI-Net: Clinical-Inspired Network for Automated Skin Lesion