Parraga-Badillo, S. R. & Coral-Ygnacio, M. A.
22 Rev. Cient. Sist. Inform. 4(1): e591; (Ene-Jun, 2024). e-ISSN: 2709-992X
Davur, Y. J., Kämper, W., Khoshelham, K., Trueman, S. J., & Bai, S. H. (2023). Estimating the Ripeness of
Hass Avocado Fruit Using Deep Learning with Hyperspectral Imaging. Horticulturae, 9(5), 1–16.
https://doi.org/10.3390/horticulturae9050599
FAO. (2020). OCDE‑FAO Perspectivas Agrícolas 2020‑2029. In OECD Publishing.
Ferraris, S., Meo, R., Pinardi, S., Salis, M., & Sartor, G. (2023). Machine Learning as a Strategic Tool for
Helping Cocoa Farmers in Côte D’Ivoire. Sensors, 23(17), 1–25. https://doi.org/10.3390/s23177632
He, L., Cheng, X., Jiwa, A., Li, D., Fang, J., & Du, Z. (2023). Zanthoxylum bungeanum Fruit Detection by
Adaptive Thresholds in HSV Space for an Automatic Picking System. IEEE Sensors Journal, 23(13),
14471–14486. https://doi.org/10.1109/JSEN.2023.3277042
Heras, D. (2017). Fruit image classifier based on artificial intelligence. Revista Killkana Técnica, 1(2), 21–
30. https://doi.org/10.26871/killkana
Jaramillo-Acevedo, C. A., Choque-Valderrama, W. E., Guerrero-Álvarez, G. E., & Meneses-Escobar, C. A.
(2020). Hass avocado ripeness classification by mobile devices using digital image processing and
ANN methods. International Journal of Food Engineering, 16(12). https://doi.org/10.1515/ijfe-2019-
0161
Juan, T., González, D., Manuel, Y. J., & Velasco, S. (2015). Diseño de Prototipo de Recogida Automatizada de
bolos mediante brazo robótico y visión artificial.
Khattak, A., Asghar, M. U., Batool, U., Asghar, M. Z., Ullah, H., Al-Rakhami, M., & Gumaei, A. (2021).
Automatic Detection of Citrus Fruit and Leaves Diseases Using Deep Neural Network Model. IEEE
Access, 9, 112942–112954. https://doi.org/10.1109/ACCESS.2021.3096895
Khriji, L., Ammari, A. C., & Awadalla, M. (2020). Hardware/software co-design of a vision system for
automatic classification of date fruits. International Journal of Embedded and Real-Time
Communication Systems, 11(4), 21–40. https://doi.org/10.4018/IJERTCS.2020100102
Lai, J. W., Ramli, H. R., Ismail, L. I., & Hasan, W. Z. W. (2022). Real-Time Detection of Ripe Oil Palm Fresh
Fruit Bunch Based on YOLOv4. IEEE Access, 10(August), 95763–95770.
https://doi.org/10.1109/ACCESS.2022.3204762
Lawal, O. M. (2021). YOLOMuskmelon: Quest for fruit detection speed and accuracy using deep learning.
IEEE Access, 9, 15221–15227. https://doi.org/10.1109/ACCESS.2021.3053167
Lee, J. H., Vo, H. T., Kwon, G. J., Kim, H. G., & Kim, J. Y. (2023). Multi-Camera-Based Sorting System for
Surface Defects of Apples. Sensors, 23(8). https://doi.org/10.3390/s23083968
Li, J., Tang, Y., Zou, X., Lin, G., & Wang, H. (2020). Detection of Fruit-Bearing Branches and Localization of
Litchi Clusters for Vision-Based Harvesting Robots. IEEE Access, 8, 117746–117758.
https://doi.org/10.1109/ACCESS.2020.3005386
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P.
J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and
meta-analyses of studies that evaluate health care interventions: explanation and elaboration. In
Journal of clinical epidemiology (Vol. 62, Issue 10). https://doi.org/10.1016/j.jclinepi.2009.06.006
Liu, Z., Wu, J., Fu, L., Majeed, Y., Feng, Y., Li, R., & Cui, Y. (2020). Improved Kiwifruit Detection Using Pre-
Trained VGG16 with RGB and NIR Information Fusion. IEEE Access, 8, 2327–2336.
https://doi.org/10.1109/ACCESS.2019.2962513
Luo, Q., Rao, Y., Jin, X., Jiang, Z., Wang, T., Wang, F., & Zhang, W. (2022). Multi-Class on-Tree Peach
Detection Using Improved YOLOv5s and Multi-Modal Images. Smart Agriculture, 4(4), 84–104.
https://doi.org/10.12133/j.smartag.SA202210004