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ABSTRACT 

This work introduces an approach to solving the Multiple Traveling Salesman Problem (mTSP) by integrating metaheuristic 

algorithms (MHs) with machine learning (ML) techniques. Specifically, the Discrete Harris Hawks Optimization (DHHO) algorithm 

was developed to handle the discrete nature of the mTSP, as the original Harris Hawks Optimization (HHO) was designed for 

continuous problems. The DHHO algorithm, enhanced with SARSA-based learning mechanisms for solution initialization and 

parameter tuning, significantly improves the efficiency of mTSP solutions. By leveraging ML's adaptability within the robust MH 

framework, this study offers a novel perspective on combinatorial optimization problems, surpassing the best-known solutions (BKS) 

in various mTSP instances. The results were tested using TSPLIB benchmark instances, including Att48, Berlin52, Bier127, Pr76, and 

Rat99, for two, three, and four salesmen, achieving optimal results in 12 out of 15 instances. The DHHO's performance was validated 

by the quality of solutions and consistency across multiple runs, with optimal results in 5 out of 5 instances for two salesmen, 3 out 

of 5 for three salesmen, and 4 out of 5 for four salesmen. Statistical validation using the Wilcoxon signed-rank test confirmed the 

significance of these improvements (p < 0.05). This work highlights the impact of integrating MHs and ML, making a substantial 

contribution to the current literature. 

Keywords: combinatorial optimization problems; initialization; metaheuristic; parameter tuning; reinforcement learning 

RESUMEN 

Este trabajo presenta un enfoque para resolver el Problema del Viajante Mu ltiple (mTSP) mediante la integracio n de algoritmos 

metaheurí sticos (MHs) con te cnicas de aprendizaje automa tico (ML). En particular, se desarrollo  el algoritmo de Optimizacio n 

Discreta de Halcones de Harris (DHHO) para manejar la naturaleza discreta del mTSP, ya que el algoritmo original de Optimizacio n 

de Halcones de Harris (HHO) fue disen ado para problemas continuos. El algoritmo DHHO, mejorado con mecanismos de aprendizaje 

basados en SARSA para la inicializacio n de soluciones y ajuste de para metros, mejora significativamente la eficiencia de las soluciones 

del mTSP. Al aprovechar la adaptabilidad del ML dentro del robusto marco de MH, este estudio ofrece una nueva perspectiva sobre 

los problemas de optimizacio n combinatoria, superando las mejores soluciones conocidas (BKS) en varias instancias del mTSP. Los 

resultados se probaron utilizando instancias de referencia de TSPLIB, incluyendo Att48, Berlin52, Bier127, Pr76 y Rat99, para dos, 

tres y cuatro vendedores, logrando resultados o ptimos en 12 de las 15 instancias. El rendimiento del DHHO se valido  por la calidad 

de las soluciones y la consistencia a lo largo de mu ltiples ejecuciones, obteniendo resultados o ptimos en 5 de 5 instancias para dos 

vendedores, 3 de 5 para tres vendedores y 4 de 5 para cuatro vendedores. La validacio n estadí stica mediante la prueba de rango con 

signo de Wilcoxon confirmo  la significancia de estas mejoras (p < 0.05). Este trabajo destaca el impacto de integrar MHs y ML, 

contribuyendo de manera sustancial a la literatura actual. 

Palabras clave: problemas de optimizacio n combinatoria; inicializacio n; metaheurí sticas; ajuste de para metros; aprendizaje por 
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1. INTRODUCTION  

Combinatorial optimization problems (COPs) are important to many applications in operations research, 

computer science, and engineering including resource allocation, scheduling, and logistics. Among these 

applications the mTSP (Mzili et al., 2023) which is challenging due to its NP-hard nature and practical 

applicability that extending the classical Traveling Salesman Problem (TSP) (Pop et al., 2023) to include 

multiple salesmen and additional constraints. The mTSP requires effective utilization of multiple salesmen 

to visit a set of cities ensuring each city is visited exactly once and minimizing total travel distance. This 

involves handling constraints such as maximum travel distances or costs for specific city assignments and 

balanced workloads. 

Despite many studies of the mTSP and its variants few have explored enhancing MHs with ML techniques. 

Recent works such as (He et al., 2024) introduced a Multi-Armed Bandit-driven Iterated Local Search 

(MILS) algorithm improving solution quality but requiring careful parameter tuning. Other approaches like 

(Belhor et al., 2023) and (Ramanathan et al., 2023) combine Genetic Algorithms (GA) with learning 

techniques to enhance optimization but adding a degree of complexity. Other methods by (Kusumahardhini 

et al., 2020) and (Latah, 2016) integrated clustering methods and Ant Colony Optimization (ACO) to 

simplify the problem but faced the increasing in computational complexity and having sensitivity to 

parameter tuning. 

Moreover, a study by (Nand et al., 2024) introduces a discrete Firefly algorithm (dFA) that balancing 

exploration and exploitation but depending on experiments to tune the parameters. The work of (Hamza 

et al., 2023) enhance the Bees Algorithm (BA-2-opt) with new local search methods achieving efficient 

mTSP solutions but lacking detailed parameter configurations. Additionally, the work of (de Castro Pereira 

et al., 2023) developed ACO-BmTSP to equalize tour lengths and minimize costs but it has parameter tuning 

sensitivity. The work of (Gulcu & Ornek, 2019) made adaptive particle swarm optimization (APSO) and 

hybrid APSO (HAPSO) outperforming other algorithms but requiring careful parameter tuning. 

These algorithms in general, facing limitations such as balancing exploration and exploitation, parameter 

tuning, and initializing the population often requiring extensive experimentation to determine best possible 

configurations. The quality of the initial population has its effect on the performance of these algorithms 

potentially reducing the time required for optimization efforts. 

This work proposes the DHHO algorithm which adapt the original HHO algorithm (Heidari et al., 2019) to 

the discrete nature of the mTSP. The DHHO utilize the 3-opt operator (Sui et al., 2021) and Levy flight (Liu 

& Cao, 2020) to simulate the exploration and exploitation mechanisms of the original algorithm. These 

modifications including integrate Multiagent Reinforcement Learning (MARL) (Hildebrandt et al., 2023) for 

initial solution generation and the State-Action-Reward-State-Action (SARSA) (Guo et al., 2023) algorithm 

for dynamic parameter tuning. This approach allows DHHO to balance exploration and exploitation in the 

solution search space while utilizing learning mechanism that adapts to problem complexities. 

The contributions of this work include the introduction of the DHHO algorithm which integrates ML 

techniques for enhancing optimization efficiency and solution quality. The DHHO outperforms best known 

solutions and traditional methods through various mTSP benchmarks effectively balancing exploration and 

exploitation. The results emphasize the algorithm's capability to consistently achieve better solutions 

compared to the best-known solutions validating the approach of combining MHs with ML for complex 

optimization challenges. 
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2. MATERIALS AND METHODS 

2.1. Problem definition  

The mTSP is an extension of the classic TSP. While the TSP seeks the shortest possible route for a salesman 

to visit each city exactly once and return to the origin city, the mTSP involves multiple salesmen as in figure 

1, all starting from a single depot, visiting a set of cities, each city has an ID, and then returning to the depot 

(Cheikhrouhou & Khoufi, 2021). The objective is often to minimize the total distance travelled by all 

salesmen, although other objectives can also be considered. 

 
Figure 1. Representation of mTSP 

The mTSP has many applications, including logistics, delivery services, and scheduling (Singh, 2016). It has 

several constraints including:  

- Constraint 1: Refer to minimize the total distance of all salesmen. 

- Constraint 2: Every city in the solution must visited exactly once by only one salesman except for 

the depot which is the starting and ending point for all salesmen. 

- Constraint 3: Salesmen must start and the route at the depot.  

- Constraint 4: The distance between two cities including the depot must be non-negative. 

- Constraint 5: The number of salesmen is part of the problem and determined before the tours of 

each salesman start so that each salesman is responsible of visiting a subset of the cities. 

- Constraint 6: The graph that represents the cities and the routes links them must be connected 

which ensures that every city can be attained from the depot by each salesman. 

For further understanding of the mathematical formulation and different constraints of the mTSP readers 

can refer to (Cheikhrouhou & Khoufi, 2021). 

2.2. Harris Hawk optimizer 

The HHO algorithm is nature inspired optimization algorithm based on the cooperative hunting of Harris 

hawks known as surprise pounce. This behavior including circling above the prey, approaching from 

different directions, and perform the surprise pounce when the prey least expecting it. The HHO algorithm 

simulates this by a mathematical model applying it to solve optimization problems (Heidari et al., 2019). 

The steps of HHO are the following: 

- Exploration phase: The algorithm search for a prey (potential solutions) randomly in this step. 

The position of the hawks is updated using the following equation: 

𝑋(𝑡 + 1) =  𝑋𝑟𝑎𝑛𝑑 −  𝑟1 |𝑋𝑟𝑎𝑛𝑑 − 2𝑟2 𝑋(𝑡)|    (6) 
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where 𝑋(𝑡 + 1) is the position vector of in the next iteration (t+1), 𝑋𝑟𝑎𝑛𝑑 is the position vector of 

randomly selected hawk from the current population, 𝑟1 and 𝑟2 are random numbers in the range 

[0, 1], and 𝑋(𝑡) is the current position of the hawk. 

- Transition from exploration to exploitation: 

The transition between exploration and exploitation is governed by the prey's escaping energy 

which decreases over time. This is represented by the variable 𝐸 which updated as the following: 

𝐸 = 2 𝐸0 (1 −
𝑡

𝑇
)     (7) 

where 𝐸0 is the initial energy of the prey which chosen randomly between range of [-1, 1], 𝑡 is the 

current iteration, and 𝑇 is the maximum number of iterations. The algorithm decides to employ 

exploration or exploitation strategies based on the value of 𝐸. 

- Exploitation phase: 

The exploitation phase is represented using two approaches based on the value of E: 

Soft Besiege (𝑤ℎ𝑒𝑛 |𝐸| ≥ 1 𝑎𝑛𝑑 𝑟 ): 

𝑋(𝑡 + 1) =  ∆𝑋(𝑡) − 𝐸. |𝐽. 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋(𝑡)|   (8) 

Hard Besiege (𝑤ℎ𝑒𝑛 − 1 < 𝐸 <  1): 

 𝑋(𝑡 + 1) =  𝑋(𝑡) − 𝐸. |𝐽. 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋(𝑡)|   (9) 

where 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) is the position vector of the rabbit (best solution found so far), ∆𝑋(𝑡) is the 

difference between the position vector of rabbit and current hawk, and 𝐽 is a random jump of the 

rabbit simulates the escape attempt. 

Soft Besiege with progressive rapid dives (PRD) and Hard Besiege with PRD are more complex 

strategies involving the mixture of soft and hard besiege techniques combined with Le vy flight-

based dive towards the prey described by: 

𝑋(𝑡 + 1) =  𝑋𝑛𝑒𝑤 𝑖𝑓 𝑞 < 0.5    (10) 

𝑋(𝑡 + 1) =  𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − |𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) −  𝑋(𝑡)|. ln (
1

𝑢
) 𝑖𝑓 𝑞 ≥ 0.5 (11) 

where 𝑋𝑛𝑒𝑤 is acquired by equations (8) and (9), and 𝑞, 𝑢 are random number between the range 

of [0, 1]. These equations allow the HHO to mimic the hunting behavior of the hawks by exploring 

and exploiting the search space to allow finding best reasonable solutions (Heidari et al., 2019). 

2.3. DHHO for mTSP 

The application of the proposed algorithm is presented in this section. The initialization of DHHO 

performed using MARL presented firstly. Then the concepts of 3-opt operator and Levy flight are presented 

and how they are utilizes in HHO to form discrete version DHHO to optimize the initial solutions of the 

problem. Lastly the parameters of DHHO are tuned by SARSA dynamically. 

Initialization 

This section presents the application of a SARSA algorithm within MARL framework to initialize solutions 

for the DHHO algorithm, targeting the mTSP. The proposed initialization process employs MARL, where 

each agent, guided by the SARSA algorithm, independently constructs a solution for the mTSP. The SARSA 

algorithm is a model-free, on-policy RL method, iteratively updates its policy based on the actions taken 
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and the consequent rewards observed, aiming to minimize the total tour length (Zhang et al., 2021). The 

flow process of initialization the solution in Algorithm 1 is as follow: 

Algorithm 1: MARL 
Inputs: Number of agents (𝑁𝑎), Number of cities (𝑁𝑐), Number of episodes (Ne), Learning rate (𝛼), 
Discount factor (𝛾), Exploration probability (𝜀) 
Outputs: Initial solutions for DHHO 
Initialize distance matrix Dist_matrix for the problem 
Initialize Q-tables 𝑄𝑖  (𝑖 = 1, 2, ..., Na) randomly for each agent 
For episode = 1 to Ne do: 
  For each agent 𝑖 = 1 to Na do: 
    Initialize the starting city (state) 𝑠  
    Initialize the tour as empty list tour  
    While not all cities are visited do: 
      With probability epsilon select a random action (next city) 𝑎 
       Otherwise select action 𝑎 with highest Q-value 𝑄𝑖(s, a) 
        Execute action 𝑎 (visit the next city), observe reward 𝑟 (negative distance) 
        Append the city to the tour list  
        Observe the new state s′ (next city) 
        With probability epsilon select a random action a′ 
        Otherwise select action a' with highest Q-value 𝑄𝑖(s′, a′) 
        Update Q-value 𝑄𝑖  (s, a) using the SARSA update rule from equation 12 
        Set state s = s' and action a = a' 
      Close the loop when all cities are visited and return to starting city 
    If convergence criteria met then break 
  Collect the final tours from all agents as initial solutions for DHHO 
Return the initial solutions for DHHO 

- Initialization: Each agent starts with randomly initialized Q-table which maps state-action pairs to 

expected rewards. The initial state is the agent's starting city with the action space comprising the 

choice of the next city to visit. 
 

- Policy Selection: Employ an ε -greedy policy for action selection, allowing agents to explore the 

action space (choosing the next city) with a probability ε and exploiting known rewarding actions 

with a probability 1- ε. 
 

- SARSA Update Rule: After selecting an action (visiting the next city) and observing the immediate 

reward (negative of the distance traveled), agents update their Q-values based on the SARSA 

formula: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]    (12) 

where 𝑄(𝑠, 𝑎) – the current Q-value for the state-action pair, 𝑎 is the learning rate, 𝑟 is the immediate 

reward, 𝛾 is the discount factor, and 𝑠′and 𝑎′ are the next state and action respectively. 

- Tour Construction: Agents iteratively select cities based on their policy, updating their Q-table 

after each move until a complete tour is constructed. The process repeats for a predefined number 

of episodes or until convergence. 

3-Opt operator and levy flight 

As stated before, HHO originally designed to meet the requirements of continuous problems. Since the 

problem tackled in this work has discrete nature, discretization of HHO is required. This is achieved by 

employing LF and 3-opt operator to mimic the exploration and exploitation criteria in the original design 

of HHO. To understand the process of DHHO, the initial solution obtained from MARL subject to DHHO 

which means further optimization process to be applied to the solutions. Before presenting the process of 
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DHHO, 3-opt and LF need to be comprehended. The exploration phase in DHHO is achieved through the 

adoption of Le vy Flight (LF) , as shown in Figure 2.  

 
Figure 2. Representation of exploration process applied on the solutions 

This choice is inspired by the foraging patterns of many animals, which exhibit a tendency for executing 

long jumps along with of shorter jumps. The advantage of integrating LF within the exploration phase of 

DHHO lies in its dual ability to utilize extensive search across the global areas of solutions while enabling 

potential navigation of local neighborhood. 

In practical terms, the application of LF in exploring mTSP solutions involves dynamically alternating 

between large jumps and small jumps within the sequence of city tours. For instance, considering an initial 

tour configuration such as A-I-G-D-C-F-E-H-B-A as in Figure 2, LF may set a minor adjustment “a small jump” 

resulting in a small but potentially useful adjustment like swapping adjacent cities. On the other hand, a 

large jump presented by LF might transform the tour to a sequence such as A-I-G-E-H-B-D-C-F-A, therefore 

send the search process into potential unexplored area of the search space. The process of LF is shown in 

Algorithm 2. 

Algorithm 2: Levy Flight 
Inputs: Current tour (Tour), Step size (E), Distance matrix (Dist_matrix) 
Outputs: New tour after LF adjustment (New_Tour) 
Generate a random number q in the range [0, 1] 
if q < 0.5 then: 
Select two adjacent cities in the tour                       // Small jump 
Swap the selected cities 
else: 
Select two cities in the tour with a significant distance apart    // Large jump 
Move the selected cities to new positions in the tour     
Evaluate the new tour length 
if new tour length is better than the current tour length then: 
Accept the new tour as New_Tour 
else: 
Retain the current tour as New_Tour 
Return New_Tour 
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In the exploitation DHHO, the 3-Opt operator utilized to carefully refine the tours identified during the 

exploration phase. The 3-Opt operator known for its effectiveness in enhancing solution quality by 

detaching three non-adjacent edges of the tour and finding the possible reconnections of the resulting 

segments. This process is designed to find a potential shorter paths that contribute to the minimization of 

the total travel distance. 

An application of the 3-Opt method illustrated in Figure 3 on tour of A-I-G-D-C-F-E-H-B-A involves the 

selection and removal of three chosen edges (breaking points), for instance (I-G), (D-C), and (E-H), thereby 

partitioning the tour into four segments. 

 
Figure 3. The representation process of 3-opt operator applied on the solutions 

The reconnection of these segments potentially after reversing or swapping some with the aim to discover 

a configuration that gives a new tour (solution) and this solution is subject to evaluation to determine is it 

better or not. A possible outcome of this process might observable as a new tour sequence, A-I-C-F-E-D-G-

H-B-A, showing the 3-Opt operator abilities in finding an optimized tour from a given configuration. The 

stopping criteria of this process is the maximum number of iterations of the algorithm which determined 

in the next section. The process of 3-opt operator is shown in the Algorithm 3. 

Algorithm 3: 3-Opt operator 
Inputs: Current tour (𝑇𝑜𝑢𝑟), Distance matrix (Dist_matrix) 
Outputs: New tour (𝑛𝑒𝑤𝑇𝑜𝑢𝑟) 
Initialize best distance as the distance of the current 𝑇𝑜𝑢𝑟 
Set New_Tour as a copy of the current 𝑇𝑜𝑢𝑟 
for each combination of three edges (𝑖, 𝑗, 𝑘) in the 𝑇𝑜𝑢𝑟 do:   
Remove edges 𝑡𝑜𝑢𝑟𝑖-𝑡𝑜𝑢𝑟𝑖+1, 𝑡𝑜𝑢𝑟𝑗-𝑡𝑜𝑢𝑟𝑗+1, 𝑡𝑜𝑢𝑟𝑘-𝑡𝑜𝑢𝑟𝑘+1// Remove three edges 

for each possible reconnection of the segments do:        // Reconnect segments 
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Reconnect the segments to form a new tour candidate 
Calculate the distance of the new tour candidate       
if the new tour candidate has a shorter distance than the best distance then: 
Update best distance with the distance of the new tour candidate 
Set 𝑛𝑒𝑤𝑇𝑜𝑢𝑟 to the new tour candidate 
Return 𝑛𝑒𝑤𝑇𝑜𝑢𝑟 

Discretization of HHO 

Adapting HHO in discrete optimization problems such as mTSP involve modifications to maintain its 

problem-solving abilities. The DHHO achieves this task through the integration of Le vy Flight (LF) for 

exploration (Liu & Cao, 2020), and utilizing 3-opt for exploitation (Sui et al., 2021). The exploration phase 

in DHHO moves from random search methods in the original HHO to LF to generate new solutions. By 

utilizing LF's characteristic long-tail distribution to facilitate both local and global search capabilities. The 

original random exploration equation (6) is thus replaced by a LF-driven approach: 

𝑋(𝑡 + 1) = 𝐿𝐹 (𝑋(𝑡), 𝐸)     (13) 

Where 𝑋(𝑡 + 1) is the position vector of the hawk in the current iteration. 𝐿𝐹 is the levy flight operation 

applied on the solution and 𝐸 is the step size that determine the type of jump and calculated based equation 

(7). To enhance the exploitation phase, DHHO adopts the 3-opt search operator. This choice reflects the 

need for a more thorough investigation of the neighborhood near the high-quality solutions allowing for 

more refinement of tours in the mTSP. The soft and hard besiege strategies are kept conceptually but are 

adapted to discrete operations facilitated by 3-opt movements by focusing on rearranging tour segments to 

find shorter routes. Therefore, the equations outlining soft and hard besiege (equations (8) and (9)) are 

redefined to incorporate 3-opt operations ensuring compatibility with the discrete nature of mTSP 

solutions as follow: 

𝑋(𝑡 + 1) = 3𝑜𝑝𝑡 (𝑋(𝑡), 𝐸)     (14) 

Certain parameters and equations specific to continuous optimization are either modified or omitted. The 

random jump strength of the rabbit (J), q; and the direct application of continuous equations for position 

updates are replaced by discrete equivalents that line up with LF and 3-opt strategies. However, r is kept 

intact to determine whether to apply soft besiege, hard besiege, soft besiege with PRD , and hard besiege 

with RBP. These adjustments ensure that all aspects of original HHO are fully align with the discrete version 

of DHHO. The pseudocode of the proposed DHHO is reported in algorithm 4. 

Algorithm 4: Discrete Harris Hawk Optimizer 
Inputs: Population size (number of hawks)(N), Maximum number of iterations (T) 
Outputs: The location of the rabbit (best solution) (𝑋𝑟𝑎𝑏𝑏𝑖𝑡), The fitness value (𝐹𝑖𝑡𝑟𝑎𝑏𝑏𝑖𝑡)  

Initialize random population 𝑋𝑖  (i = 1, 2, ..., N) 
Initialize distance matrix 𝐷𝑖𝑠𝑡𝑚𝑎𝑡𝑟𝑖𝑥  for the problem 
while (stopping condition is not met) do: 
   Calculate the fitness values of hawks 
   Set 𝑋𝑟𝑎𝑏𝑏𝑖𝑡  as the location of the rabbit (best location found so far) 
   for each hawk 𝑋𝑖  do: 
     Set initial energy 𝐸0 and jump strength 𝐽 
     Update E using Equation (7) 
     if (abs(E) >= 1) then: 
       Update location vector using 𝐿𝐹 Equation (12)  // Exploration phase 
     if (abs(E) < 1) then:                          // Exploitation phase 
       if (r >= 0.5 and abs(E) >= 0.5) then: 
         Update location vector using Equation (8)    // Soft besiege 
          Apply Equation (13) to increase exploitation 
       else if (r >= 0.5 and abs(E) < 0.5) then: 



Hussein, A. A. et al. 

9                                                                                        Rev. Cient. Sist. Inform. 4(2): e745; (Jul-Dec, 2024). e-ISSN: 2709-992X 

         Update location vector using Equation (9)    // Hard besiege 
          Apply Equation (13) to increase exploitation 
       else if (r < 0.5 and abs(E) >= 0.5) then: 
         Update location vector using Equation (10)   // Soft besiege with PRD 
       else if (r < 0.5 and abs(E) < 0.5) then: 
         Update location vector using Equation (11)   // Hard besiege with PRD 
   Update 𝑋𝑟𝑎𝑏𝑏𝑖𝑡  if the new position of hawk is better 
Return 𝑋𝑟𝑎𝑏𝑏𝑖𝑡 , 𝐹𝑖𝑡𝑟𝑎𝑏𝑏𝑖𝑡  

Parameter tuning of DHHO 

To optimize the DHHO algorithm's parameters for solving the mTSP through the SARSA algorithm, the focus 

on three critical parameters: iterations, population size, and prey energy. These parameters significantly 

influence the algorithm's performance by controlling the exploration and exploitation balance and the 

quality of solutions generated for the mTSP (Hussein et al., 2023). 

Initially, random values for iterations (I), population size (P), and prey energy (E) are selected within their 

respective ranges. The Q-table is then established for state-action pairs. States are defined by the values of 

I, P, and E while actions represented as adjustments to these parameters. The SARSA algorithm iteratively 

updates the Q-values based on the performance feedback from executing the DHHO algorithm with these 

parameters. 

For example, starting with initial values I=100, P=10, and E=0.5 an action might be chosen to increase the 

population size (P) to 15. If this change leads to a reduction in the total distance of the TSP tour, the obtained 

reward is indicating an improvement in solution quality. The Q-value for this state-action pair is updated 

accordingly, reinforcing the action's effectiveness. In subsequent episodes, actions to adjust the parameters, 

such as increasing I or modifying E are selected based on the policy determined by the Q-table. Each action 

measured by the tour distance informs the SARSA algorithm which updates the Q-values to incorporate a 

new knowledge about the parameter settings effectiveness. 

Algorithm 5 details the flow process of parameter tuning. 

Algorithm 5: State-Action-Reward-State-Action 
Inputs: Number of episodes (Ne), Learning rate (𝛼), Discount factor (𝛾), Exploration 
probability (𝜀) 
Outputs: Optimized parameters for DHHO (𝐼, 𝑃, 𝐸) 
 
Initialize random initial values for iterations (𝐼), population size (𝑃), and prey energy (𝐸) 
Initialize Q-table 𝑄(𝑠, 𝑎) for state-action pairs 
 
Define states as combinations of 𝐼, 𝑃, 𝑎𝑛𝑑 𝐸 
Define actions as adjustments to 𝐼, 𝑃, 𝑎𝑛𝑑 𝐸 
For episode = 1 to Ne do: 
  Initialize state (𝐼, 𝑃, 𝐸) 
  while not stopping condition do: 
    With probability 𝜀 select a random action         //adjustment to I, P, or E 
    Otherwise select the action with the highest Q-value for the current state   
    Execute the DHHO algorithm with the current parameters (𝐼, 𝑃, 𝐸) 
    Observe the performance                        //total tour distance 
    Calculate the reward 𝑟  
    Observe the new state (𝐼′, 𝑃′, 𝐸′) after taking the action 
    With probability 𝜀 select a random action 𝑎′ 
    Otherwise, select the action 𝑎′ with the highest Q-value for the new state 
    Update Q-value 𝑄(𝑠, 𝑎) using the SARSA update rule form equation (12) 
    Set state 𝑠 =  𝑠′ and action 𝑎 =  𝑎′ 
    If convergence criteria met then break 
Return the optimized parameters (𝐼, 𝑃, 𝐸) from the Q-table 
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2.4. Experimental setup 

The computational experiments were conducted on a laptop equipped with an AMD Ryzen 7 5800H 

processor, 16GB of RAM, running a Windows 10 operating system. The choice of hardware is significant, as 

the computational power and memory directly impact the performance of the optimization algorithms, 

particularly during the intensive iterative processes involved in solving the mTSP. The algorithms were 

implemented in Python 3.8, utilizing the PyCharm integrated development environment (IDE) for code 

development and debugging.  

The datasets used in this study were sourced from the TSPLIB, a well-known repository for benchmark 

instances of the Traveling Salesman Problem (TSP) and its variants. Specifically, instances such as Att48, 

Berlin52, and Bier127 were selected due to their varying complexities and city counts, providing a 

comprehensive evaluation of the proposed Discrete Harris Hawks Optimization (DHHO) algorithm. 

3. RESULTS AND DISCUSSIONS 

The computational results obtained from the application of the DHHO algorithm present a significant 

advancement in solving the mTSP, alongside its non-learning variant of DHHO (NLDHHO) at which its initial 

solution generated randomly and parameters tuned in offline tuning (Ghani et al., 2004). Table 1 presents 

the parameters values of the experiment conducted to find the best configuration for the DHHO’s 

parameters number of iterations (I), number of populations (P), and prey energy (P). For the NLDHHO the 

parameters selected by utilizing Taguchi method (Taguchi & Phadke, 1984).It is worth mentioning that 

those parameters values selected for each instance regardless the number of salesmen to ensure well tuning 

of algorithms’ behavior. When compared against BKS of dFA (Nand et al., 2024), HAPSO (Gulcu & Ornek, 

2019), and BA-2-opt (Hamza et al., 2023), both versions of DHHO show interesting performance emphasize 

the effectiveness of learning-based parameter optimization and initialization methods in solving 

combinatorial problems regarding the total distance achieved. In the evaluation through various mTSP 

instances in table 2 including Att48, Berlin52, Bier127, Pr76, and Rat99 from TSPLIB (Reinelt, 1991), the 

number in each instance of them indicates the number of cities (e.g., in Att48, there are 48 cities), with each 

city represented by ID and its coordinates. 

Table 1.  

Parameter values for each instance 

Salesmen Instances 
DHHO parameters 

NLDHHO parameters 
 

I P E I P E 

2 

Att48 202 33 0.57 266 56 0.5 
Berlin52 373 12 0.49 448 44 0.46 
Bier127 370 31 0.36 487 87 0.93 
Pr76 188 62 0.65 206 90 0.75 
Rat99 171 11 0.23 415 45 0.39 

3 

Att48 113 59 0.36 288 72 0.61 
Berlin52 120 13 0.43 341 39 0.57 
Bier127 202 47 0.51 364 51 0.97 
Pr76 221 21 0.81 445 38 0.86 
Rat99 152 73 0.28 314 63 0.77 

4 

Att48 430 13 0.56 485 59 0.59 
Berlin52 187 30 0.63 439 63 0.63 
Bier127 191 42 0.14 472 72 0.97 
Pr76 199 27 0.65 466 85 0.65 
Rat99 363 67 0.25 459 99 0.35 

For configurations involving 2, 3, and 4 salesmen the results present a clear difference in solution quality, 

particularly emphasizing the minimized total distance achieved by the learning variant of DHHO. The DHHO 
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algorithm outperforms NLDHHO and the other algorithms in scenarios with a different number of salesmen 

with 12 out 15 instances, demonstrating its higher abilities in managing increased complexity and solution 

space dimensions. 

Table 2.  

The results of the proposed algorithm against BKS 

Salesmen Instances BKS dFA HAPSO BA-2-opt NLDHHO DHHO 

2 

Att48 35047.1 35047.1 37690.9 35380.9 36187.41 34438.3 

Berlin52 8058.3 8058.3 8268.4 8208.1 8139.18 7961.64 

Bier127 124622.4 124622.4 127089.9 130419.9 124916.73 124047.97 

Pr76 115752.8 116963.4 123341.7 115752.8 115924.71 115113.92 

Rat99 1369.1 1369.1 1442.3 1372.5 1438.23 1327.80 

3 

Att48 38296.3 38421.8 43845.9 38296.3 38824.46 38435.63 

Berlin52 8545.8 8545.8 9180.5 8594.3 8831.72 8257.67 

Bier127 126806.7 126806.7 137325.9 134036.7 139249.58 123073.14 

Pr76 123239.4 134889.80 143102.8 123239.4 129841.22 124964.75 

Rat99 1431.5 1561.54 1734.1 1431.5 1519.31 1363.28 

4 

Att48 42169.88 43391.14 52716.6 42847.8 43949.81 41558.24 

Berlin52 8820.24 9047.91 10365 9107.9 9135.39 8546.82 

Bier127 132823.56 132823.56 147184.6 138575.6 133215.72 132495.48 

Pr76 130913.5 152747.51 168679.15 130913.5 131456.40 130997.12 

Rat99 1522.9 1801.94 2033.8 1522.9 1672.86 1482.19 

For instance, in the Berlin52 instance with 2, 3, and 4 salesmen DHHO achieved 7961.64, 8257.67, and 

8546.82 respectively indicating performance better than the benchmark set by traditional algorithms and 

also shows a well improvement over the BKS. This the same case in instances Att48, Bier127 , and Rat99 

and for 2, 3, and 4 salesmen. That is become clearer in more complex instance “Bier127” where the 

124047.97, 123073.14 , and 132495.48 obtained in 2, 3 , and 4 salesmen respectively which is better than 

other algorithms in the term of less total distance as opposed to NLDHHO which performed poorly in 

compared to DHHO. This is attributed to the SARSA’s role in fine tuning the DHHO parameters, advancing 

more adaptive exploration and exploitation balance in the search space. 

Moreover, the comparative analysis against BKS reveals that DHHO learning-driven approach substantially 

enhances the algorithm's efficiency particularly evident in instances were traditional heuristics struggle to 

find better results. The utilization of SARSA for parameter initialization and tuning within DHHO has proven 

to be effective for its abilities enabling dynamic adjustments that are essential for addressing the 

complexities of the mTSP effectively. The experimental evidence presented in the study shows the value of 

integrating RL techniques with MHs optimization algorithms for combinatorial optimization problems. The 

DHHO algorithm with its learning-based enhancements competes with traditional algorithms as well clear 

the way for new solution in mTSP. 

3.1. Performance analysis 

In this study, the performance of the DHHO algorithm evaluated across various mTSP instances with 

different numbers of salesmen. In table 3, the standard deviation (SD) and SD/Mean ratio were used to 

assess the consistency of the results, where lower values indicate higher consistency. These metrics is a 

reflection of 30 runs to test the algorithms’ consistency. For instance, “Att48” in 2 salesmen exhibited a low 

SD of 38.27 and an SD/Mean ratio of 0.11%, demonstrating high reliability. Similarly, “Berlin52” showed a 

consistent performance with an SD of 15.3and an SD/Mean ratio of 0.19%. The mean objective function 

values provided a measure of central tendency, with lower means reflecting better performance. “Att48” 
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had a mean value of 34482.48, indicating strong overall performance, while “Berlin52” had a mean value of 

7990.12, also suggesting effective optimization. 

Computational efficiency was assessed through the minimum and average computational times. Table 3 

reveals that “Att48” in 2 salesmen achieved its best result in a minimum time of 0.94 seconds, with an 

average computational time of 1.88 seconds, indicating efficient computation. “Berlin52” demonstrated 

similar efficiency with a minimum time of 0.71 seconds and an average time of 1.34 seconds. 

However, some instances revealed limitations. For example, “Bier127” in 2 salesmen exhibited a higher SD 

of 5531.49 and an SD/Mean ratio of 4.45%, indicating greater variability in the results. Additionally the 

“Pr76” instance in 2 salesmen had mean value of 115205.11 with SD of 135.73 reflecting less consistent 

performance in compare to other instances. The computational time for “Bier127” instance showed higher 

variability with minimum time of 2.47 seconds and average time of 3.85 seconds which indicate less 

efficient computation. 

These results highlight the DHHO ability to produce high quality solutions with reasonable time for certain 

instances such as “Att48” and “Berlin52” instances. However these variability and computational time for 

instances like “Bier127” and “Pr76” suggest areas for further improvement. 

The computational complexity of DHHO algorithm analyzed to comprehend how it is scale with problem 

size. The algorithm time complexity estimated to be O(n^2) where n represents the number of cities. This 

indicates the computational time increases quadratically with the problem size which consistent with the 

results shown in Table 3. The minimum and average time reported in Table 3 reflects the practical run time 

for problem instances which align with the expected theoretical growth in computational resources as the 

input size increase. 

Table 3.  

Descriptive statistical metrics values of DHHO performance 

Instance Salesmen SD Mean SD/Mean ratio Min Time Avg Time 

Att48 

2 
 

38.27 34482.48 0.11 % 0.94 1.88 

Berlin52 15.3 7990.12 0.19 % 0.71 1.34 

Bier127 5531.49 124174.12 4.45 % 0.93 1.55 

Pr76 135.73 115205.11 0.12 % 0.42 1.79 

Rat99 18.22 1361.46 1.34 % 0.15 1.7 

Att48 

3 

17.93 38453.59 0.05 % 0.98 1.9 

Berlin52 16.55 8284.79 0.2 % 1.76 1.92 

Bier127 44.82 123115.92 0.04 % 0.59 1.42 

Pr76 19.05 124981.86 0.02 % 4.82 5.33 

Rat99 14.76 1385.71 1.07 % 8.88 8.93 

Att48 

4 

29.46 41596.16 0.07 % 2.38 2.80 

Berlin52 25.96 8583.25 0.3 % 2.49 7.04 

Bier127 37.51 132536.28 0.03 % 5.47 12.41 

Pr76 27.36 131028.46 0.02 % 3.84 6.17 

Rat99 17.41 1508.84 1.15 % 3.35 5.98 

Additionally, The Wilcoxon signed rank test is conducted to compare the performance of the DHHO 

algorithm against the NLDHHO algorithm across various instances. The statistical test applied to evaluate 

whether the observed difference in solution quality between DHHO and NLDHHO is statistically significant. 

The p-values obtained from the Wilcoxon test indicate the level of statistical significance of the performance 

differences between DHHO and NLDHHO. The p-value less than 0.05 is considered statistically significant 

in general meaning that there is strong evidence to suggest that the performance difference is not due to 

random chance. For 2 salesmen all instances show statistically significant differences (p < 0.05) with p-

values ranging from 0.01862 (Att48) to 0.03725 (Bier127). This suggests that DHHO significantly 
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outperforms NLDHHO in all the tested instances when using 2 salesmen. For 3 salesmen The Att48 instance 

show a p-value of 0.09672 which is not statistically significant (p > 0.05). However, the other instances 

(Berlin52, Bier127, Pr76, and Rat99) have p-values below 0.05 indicating significant differences in 

performance in favor for DHHO. For 4 salesmen all instances demonstrate statistically significant 

differences (p < 0.05) with the Berlin52 instance showing the most significant difference (p = 0.01873). 

Table 4.  

Wilcoxon signed ranked test for DHHO against NLDHHO 

Instance Salesmen Wilcoxon test 

Att48 

2 
 

0.01862 

Berlin52 0.01893 

Bier127 0.03725 

Pr76 0.02707 

Rat99 0.03634 

Att48 

3 

0.09672 

Berlin52 0.04287 

Bier127 0.03865 

Pr76 0.03362 

Rat99 0.027394 

Att48 

4 

0.04865 

Berlin52 0.01873 

Bier127 0.02718 

Pr76 0.03949 

Rat99 0.03452 

Furthermore, the performance analysis of the DHHO algorithm applied to solve the mTSP presented 

focusing on the vision provided by Figure 4. These figures are visualization of the 30 runs of the solution 

obtained by DHHO displayed as boxplot to test the consistency of the proposed DHHO. A boxplot is a 

standard way of displaying the distribution of data based on five components: minimum value, first quartile, 

median, third quartile, and maximum. It can also highlight outliers in the data set if available. This 

visualization is useful in comparing the spread and skewness of algorithm performance over multiple runs. 

In the context of DHHO's analysis boxplots encapsulate the variability and central tendency of the total 

distances achieved by the proposed algorithm which provide a clear comparative perspective. Figure 4 (a) 

draws the boxplot for instances including two salesmen. The skewness observed in these plots emphasize 

an orientation towards lower total distances (minimum value) indicating efficient solutions.  

(a) 
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b) 

 

(c) 

 

Figure 4. The boxplot of the results for: (a) two salesmen (b) three salesmen (c) four salesmen 

This skewness of the distribution suggests that DHHO constantly pushes the boundary towards best found 

solutions as evidenced by the concentration of total distances on the lower end of the box. Similarly, Figure 

4 (b) and Figure 4 (c) provide this analysis of mTSP instances with three and four salesmen respectively. 

The distribution shapes validate DHHO's robustness in handling increased complexity. The learning based 

DHHO shows a plain skewness towards better performance indicating that the SARSA enhanced parameter 

tuning effectively navigates the solution space to find better tours. The appearance of these boxplots and 

their skewness can be attributed to the essential learning capabilities of DHHO. By utilizing SARSA for 

initialization and parameter tuning DHHO adapts its search strategy dynamically. This adaptability is 

essential in solving mTSP instances efficiently as it allows the algorithm to balance the exploration and 

exploitation which lead to better outcomes as compared to traditional or non-learning approaches. 

While the DHHO shown promising results in solving the mTSP several limitations should be addressed. The 

computational complexity may limit its applicability to very large problem instances. Additionally, the 

experiments were conducted on symmetric mTSP instances so the algorithm did not tested to other 

problem variations such as asymmetric instances or those with additional constraints. The algorithm's 

performance is also sensitive to parameter settings requiring extensive tuning. Moreover, the algorithm has 
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not yet been tested in real-world scenarios leaving its practical applicability open. Finally, the scalability of 

the DHHO algorithm to significantly larger problem sizes remain an open question which could affect its 

utility in handling more extensive optimization problems. 

CONCLUSIONS 

In this study the DHHO algorithm presented enhance with SARSA-based dynamic parameter tuning and 

MARL for initialization of the population to solve the mTSP. The integration of MHs with ML for DHHO aimed 

to improve solution quality and computational efficiency across various problem instances. The 

experimental results shown that DHHO outperforms traditional optimization algorithms achieving an 

average reduction in total distance across 12 out of 15 benchmark instances from TSPLIB. The statistical 

significance of these improvements confirmed through the Wilcoxon signed rank test with p-values below 

0.05 confirms the robustness and effectiveness of the proposed algorithm. Despite these promising 

outcomes the study also identified certain limitations. The quadratic time complexity of the DHHO 

algorithm may impact its scalability in very large problem instances. Additionally, the generalizability of 

the algorithm to different variations of the mTSP such as asymmetric instances remains an open area for 

further research. Future work should focus on optimizing the computational complexity of the DHHO 

algorithm to enhance its scalability and applicability to larger problem instances. Exploring the integration 

of other ML techniques and further testing the algorithm on real-world instances could provide more 

understanding into its potential. The findings of this study contribute to the growing body of research on 

hybrid optimization algorithms highlighting the value of combining MHs with ML to solve complex 

combinatorial optimization problems. 
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