Use of data warehouse for business decision making: a literary review
DOI:
https://doi.org/10.51252/rcsi.v3i2.543Keywords:
success stories, design, DwH, implementation, methodologyAbstract
Over the years, Data Warehouses (DwH) have become necessary for companies that handle huge amounts of data from one or more sources, such as transactional systems or other relational databases. This tool allows processing and transforming raw data into useful information, make it available and accessible so that users can analyze it. Our objective was to identify the reason why it is necessary to implement DwH in organizations, as well as identify success stories, to achieve this we rely on the integrative review technique, using bibliographic search engines, ensuring the review of articles published in indexed journals. between the years 2018 and 2022. The review has made it possible to determine that the use of DwH plays an important role in decision-making in organizations. In conclusion, the Data Warehouse (DwH) is a fundamental tool in business decision-making by providing a solid infrastructure to collect, store and analyze large volumes of relevant data, allowing a holistic vision of the business and making decisions based on evidence, empowering business leaders to identify trends, opportunities and make strategic decisions, improving the efficiency, profitability and competitive advantage of companies.
References
Alvarez Gonzaga, B. R. (2021). Inteligencia de negocios para la toma de decisiones: Un enfoque desde la dirección estratégica de instituciones educativas. Revista Scientific, 6(19), 295–312. https://doi.org/10.29394/Scientific.issn.2542-2987.2021.6.19.15.295-312
Arias La Rosa, A., Rodríguez Cruz, Y., & Rodríguez Martínez, A. (2019). Comportamiento de la producción científica sobre Inteligencia Organizacional en la base de datos SCOPUS (2009-2019). Alcance, 10(26). https://revistas.uh.cu/alcance/article/view/5206%0A
Avila Cruz, C. A., & Chiquito Muñiz, J. J. (2022). La integración de Datamart con Datawarehouse. UNESUM-Ciencias. Revista Científica Multidisciplinaria. ISSN 2602-8166, 6(1), 23–30. https://doi.org/10.47230/unesum-ciencias.v5.n4.2021.470
Bouchra, A., Larbi, K., Wakrime, A., & Abderrahim, S. (2019). Linking Context to Data Warehouse Design. International Journal of Advanced Computer Science and Applications, 10(1). https://doi.org/10.14569/IJACSA.2019.0100102
Božič, K., & Dimovski, V. (2019). Business intelligence and analytics for value creation: The role of absorptive capacity. International Journal of Information Management, 46, 93–103. https://doi.org/10.1016/j.ijinfomgt.2018.11.020
Bustamante- Granda, W. X., Macas- Ruiz, E. M., & Cevallos- Macas, F. B. (2018). Data Warehouse: Análisis Multidimensional de BAFICI utilizando Power Pivot. Revista Espacios, 39(34), 24. https://www.revistaespacios.com/a18v39n34/18393424.html
Cantero Díaz, A., Goire Castilla, M. M., & Quintana Cassulo, Y. (2019). Sistema para la gestión y análisis de datos de una red de sensores inalámbricos basado en un almacén de datos. Revista Cubana de Ciencias Informáticas, 13(3), 76–90. http://scielo.sld.cu/pdf/rcci/v13n3/2227-1899-rcci-13-03-76.pdf
Eschrich, S. A., Teer, J. K., Reisman, P., Siegel, E., Challa, C., Lewis, P., Fellows, K., Malpica, E., Carvajal, R., Gonzalez, G., Cukras, S., Betin-Montes, M., Aden-Buie, G., Avedon, M., Manning, D., Tan, A. C., Fridley, B. L., Gerke, T., Van Looveren, M., … Rollison, D. E. (2021). Enabling Precision Medicine in Cancer Care Through a Molecular Data Warehouse: The Moffitt Experience. JCO Clinical Cancer Informatics, 5, 561–569. https://doi.org/10.1200/CCI.20.00175
Forero Castañeda, D. A., & Sánchez Garcia, J. A. (2021). Introducción a La Inteligencia De Negocios Basada En La Metodología Kimball. Revista Tia, 9(1), 5–17. https://revistas.udistrital.edu.co/index.php/tia/article/view/18082/17993
Gacitua, R., Mazon, J. N., & Cravero, A. (2019). Using Semantic Web technologies in the development of data warehouses: A systematic mapping. WIREs Data Mining and Knowledge Discovery, 9(3). https://doi.org/10.1002/widm.1293
García-Jiménez, A. de-J., Aguilar-Morales, N., Hernández-Triano, L., & Lancaster-Díaz, E. (2021). La inteligencia de negocios: herramienta clave para el uso de la información y la toma de decisiones empresariales. Revista de Investigaciones Universidad Del Quindío, 33(1), 132–139. https://doi.org/10.33975/riuq.vol33n1.514
García Estrella, C. W., Barón Ramírez, E., & Sánchez Gárate, S. K. (2021). La inteligencia de negocios y la analítica de datos en los procesos empresariales. Revista Científica de Sistemas e Informática, 1(2), 38–53. https://doi.org/10.51252/rcsi.v1i2.167
Hanine, M., Lachgar, M., Elmahfoudi, S., & Boutkhoum, O. (2021). MDA Approach for Designing and Developing Data Warehouses: A Systematic Review & Proposal. International Journal of Online and Biomedical Engineering (IJOE), 17(10), 99. https://doi.org/10.3991/ijoe.v17i10.24667
Medina, F., Fariña, F., & Castillo, R. (2018). Data mart to obtain indicators of academic productivity in a university | Data mart para obtención de indicadores de productividad académica en una universidad. Ingeniare, 26, 88–101. https://www.scielo.cl/pdf/ingeniare/v26s1/0718-3305-ingeniare-26-00088.pdf
Mora, G. (2018). Siglo XXI economía de la información: gestión del conocimiento y Business Intelligence, el camino a seguir hacia la competitividad. SIGNOS - Investigación En Sistemas de Gestión, 10(2), 161–174. https://doi.org/10.15332/s2145-1389.2018.0002.09
Pavlenko, E., Strech, D., & Langhof, H. (2020). Implementation of data access and use procedures in clinical data warehouses. A systematic review of literature and publicly available policies. BMC Medical Informatics and Decision Making, 20(1), 157. https://doi.org/10.1186/s12911-020-01177-z
Reyes-Mena, F. X., Fuertes-Díaz, W. M., Guzmán-Jaramillo, C. E., Pérez-Estévez, E., Bernal-Barzallo, P. F., & Villacís-Silva, C. J. (2018). Aplicación de Inteligencia de Negocios para el análisis de vulnerabilidades en pro de incrementar el nivel de seguridad en un CSIRT académico. Revista Facultad de Ingeniería, 27(47), 21–29. https://doi.org/10.19053/01211129.v27.n47.2018.7747
Romero, Yamila Mateu Guevara, J. A., & Cano, F. A. (2020). Estrategia de Integración de un Proyecto de Almacenes de Datos Integration Strategy of a Data Warehouse Project. Serie Científica de La Universidad de Las Ciencias Informáticas, 13(7), 144–162. https://dialnet.unirioja.es/servlet/articulo?codigo=8590329
Santoso, L. W., & Yulia. (2017). Data Warehouse with Big Data Technology for Higher Education. Procedia Computer Science, 124, 93–99. https://doi.org/10.1016/j.procs.2017.12.134
Silva-Peñafiel, G. E., Córdova-Vaca, A. M., Cusco-Vinueza, V. A., & Estrada-Velasco, M. V. (2021). Implementación de un Data Warehouse mediante la metodología Hefestos para la toma de decisiones en el Instituto Nacional de Patrimonio Cultural Regional 3. Dominio de Las Ciencias, 7(3), 1116–1135. https://dominiodelasciencias.com/index.php/es/article/view/2044
Silva Peñafiel, G. E., Zapata Yánez, V. M., Morales Guamán, K. P., & Toaquiza Padilla, L. M. (2019). Análisis de metodologías para desarrollar Data Warehouse aplicado a la toma de decisiones. Ciencia Digital, 3(3.4.), 397–418. https://doi.org/10.33262/cienciadigital.v3i3.4..922
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Tamayo Yero, H. A., Milanés Batista, C., & Milanés Clavijo, V. A. (2019). Almacén de Datos para la gestión de estudios de Peligro, Vulnerabilidad y Riesgo en Cuba. Revista Cubana de Ciencias Informáticas, 13(2). http://scielo.sld.cu/pdf/rcci/v13n2/2227-1899-rcci-13-02-61.pdf
Valarezo-Avila, B., Córdova-Aponte, M., & Serrano-Orellana, B. (2021). Inteligencia de negocios como herramienta clave en el desempeño empresarial. 593 Digital Publisher CEIT, 6(6), 306–325. https://doi.org/10.33386/593dp.2021.6.727
Vallejos, C., Caniupan, M., & Gutierrez, G. (2018). Compact Data Structures to Represent and Query Data Warehouses into Main Memory. IEEE Latin America Transactions, 16(9), 2328–2335. https://doi.org/10.1109/TLA.2018.8789552
Zambrano, C. del C., Rojas, D. F., & Salcedo, P. A. (2018). Un Método para Analizar Datos de Pruebas Educacionales Estandarizadas usando Almacén de Datos y Triangulación. Formación Universitaria, 11(4), 3–14. https://doi.org/10.4067/S0718-50062018000400003
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Alexander Romero-Chuquital, John Jeanfranco Melendres-Velasco
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain their rights:
a. The authors retain their trademark and patent rights, as well as any process or procedure described in the article.
b. The authors retain the right to share, copy, distribute, execute and publicly communicate the article published in the Revista Científica de Sistemas e Informática (RCSI) (for example, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in the RCSI.
c. Authors retain the right to make a subsequent publication of their work, to use the article or any part of it (for example: a compilation of their works, notes for conferences, thesis, or for a book), provided that they indicate the source of publication (authors of the work, journal, volume, number and date).