Sistema de recomendación de artículos de línea blanca basado en el algoritmo KNN

Autores/as

DOI:

https://doi.org/10.51252/rcsi.v3i2.557

Palabras clave:

comercio electrónico, distancia euclidiana, K-vecinos, marketing digital

Resumen

En la presente investigación se busca mejorar el proceso del marketing digital para temas del comercio electrónico, su principal objetivo es implementar y poner en funcionamiento un sistema de recomendación que permita recomendar correctamente un producto a un cliente ahorrándole tiempo en su proceso de búsqueda y decisión. Se utiliza el algoritmo K vecinos más cercanos junto a su fórmula de la distancia euclidiana que permite mejorar la precisión al momento de brindar resultados. Para el presente caso se trabajó con las preferencias de un usuario y una cantidad de más de 100 productos de distintos modelos y funcionalidades que son identificadas mediante variables de identificación como, color, marca, modelo, precio que nos sirven para poder realizar el cálculo de la distancia y generar “N” recomendaciones más cercanas a los gustos del cliente, los resultados muestran que el algoritmo propuesto es eficiente en cuanto a la recomendación de productos logrando generar recomendaciones de manera eficiente en relación a las preferencias de los clientes.

Citas

Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Applied Computing and Informatics, 12(1), 90–108. https://doi.org/10.1016/j.aci.2014.10.001

Afoudi, Y., Lazaar, M., & Al Achhab, M. (2021). Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network. Simulation Modelling Practice and Theory, 113, 102375. https://doi.org/10.1016/j.simpat.2021.102375

Bag, S., Ghadge, A., & Tiwari, M. K. (2019). An integrated recommender system for improved accuracy and aggregate diversity. Computers & Industrial Engineering, 130, 187–197. https://doi.org/10.1016/j.cie.2019.02.028

Cai, X., Hu, Z., Zhao, P., Zhang, W. S., & Chen, J. (2020). A hybrid recommendation system with many-objective evolutionary algorithm. Expert Systems with Applications, 159, 113648. https://doi.org/10.1016/j.eswa.2020.113648

Cao, B., Zhao, J., Liu, X., Kang, X., Yang, S., Kang, K., & Yu, M. (2018). Multiobjective recommendation optimization via utilizing distributed parallel algorithm. Future Generation Computer Systems, 86, 1259–1268. https://doi.org/10.1016/j.future.2017.09.005

Cao, Y., & Li, Y. (2007). An intelligent fuzzy-based recommendation system for consumer electronic products. Expert Systems with Applications, 33(1), 230–240. https://doi.org/10.1016/j.eswa.2006.04.012

Castro Gallardo, J. (2012). Un nuevo modelo ponderado para sistemas de recomendación basados en contenido con medidas de contingencia y entropía [Universidad de Jaén]. https://sinbad2.ujaen.es/sites/default/files/publications/TTII_JorgeCastro.pdf

Criado González, M. (2018). Análisis e implementación de un sistema de recomendación para la lista de la compra [Universidad Carlos III de Madrid]. http://hdl.handle.net/10016/2943

Franco Zapata, A. (2021). Sistemas de recomendación contextual [Universidad EAFIT]. http://hdl.handle.net/10784/3141

Guevara Albán, G. P., Guevara Albán, C., & Valverde, I. (2018). Sistemas de Recomendaciones: Una herramienta para mejorar la gestión de la información en las PYMES. Journal of Science and Research: Revista Ciencia e Investigación, 3(CITT2017), 121–127. https://doi.org/10.26910/issn.2528-8083vol3isscitt2017.2018pp121-127

Hssina, B., & Erritali, M. (2019). A personalized pedagogical objectives based on a genetic algorithm in an adaptive learning system. Procedia Computer Science, 151(2018), 1152–1157. https://doi.org/10.1016/j.procs.2019.04.164

Jain, A., Nagar, S., Singh, P. K., & Dhar, J. (2020). EMUCF: Enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems. Expert Systems with Applications, 161, 113724. https://doi.org/10.1016/j.eswa.2020.113724

Karthik, R. V., & Ganapathy, S. (2021). A fuzzy recommendation system for predicting the customers interests using sentiment analysis and ontology in e-commerce. Applied Soft Computing, 108, 107396. https://doi.org/10.1016/j.asoc.2021.107396

Korus, K., Salamak, M., & Jasiński, M. (2021). Optimization of geometric parameters of arch bridges using visual programming FEM components and genetic algorithm. Engineering Structures, 241, 112465. https://doi.org/10.1016/j.engstruct.2021.112465

Kumar Sharma, A., Bajpai, B., Adhvaryu, R., Dhruvi Pankajkumar, S., Parthkumar Gordhanbhai, P., & Kumar, A. (2023). An Efficient Approach of Product Recommendation System using NLP Technique. Materials Today: Proceedings, 80, 3730–3743. https://doi.org/10.1016/j.matpr.2021.07.371

Li, M., Li, Y., Lou, W., & Chen, L. (2020). A hybrid recommendation system for Q&A documents. Expert Systems with Applications, 144, 113088. https://doi.org/10.1016/j.eswa.2019.113088

Liu, H., Zhao, J., Li, P., Zhao, P., & Wu, X. (2021). Shared-view and specific-view information extraction for recommendation. Expert Systems with Applications, 186, 115752. https://doi.org/10.1016/j.eswa.2021.115752

Luque-Ortiz, S. (2021). Estrategias de marketing digital utilizadas por empresas del retail deportivo. Revista CEA, 7(13), 0–22. https://doi.org/10.22430/24223182.1650

Marín López, J. C., & López Trujillo, M. (2020). Análisis de datos para el marketing digital emprendedor: Caso de estudio Parque de Innovación Empresarial - Universidad Nacional sede Manizales. Revista Universidad y Empresa, 22(38), 65. https://doi.org/10.12804/revistas.urosario.edu.co/empresa/a.7135

Martinez Rodriguez, J. R., & Alarcón Martínez, G. J. (2020). Análisis de la flexibilidad del proveedor y la participación de abastecimientos en el desempeño de manufactura para el sector de electrodomésticos (Analysis of supplier flexibility and purchasing participation in the manufacturing performance for applianc. Revista Innovaciones de Negocios, 17(33), 98–127. https://doi.org/10.29105/rinn17.33-6

Mlika, F., & Karoui, W. (2020). Proposed Model to Intelligent Recommendation System based on Markov Chains and Grouping of Genres. Procedia Computer Science, 176, 868–877. https://doi.org/10.1016/j.procs.2020.09.082

Ni, L., Lin, H., Zhang, M., & Zhang, J. (2018). Hybrid Filtrations Recommendation System based on Privacy Preserving in Edge Computing. Procedia Computer Science, 129, 407–409. https://doi.org/10.1016/j.procs.2018.03.016

Ravnik, J., Jovanovac, J., Trupej, A., Vištica, N., & Hriberšek, M. (2021). A sigmoid regression and artificial neural network models for day-ahead natural gas usage forecasting. Cleaner and Responsible Consumption, 3, 100040. https://doi.org/10.1016/j.clrc.2021.100040

Sánchez, N. (2019). Línea Blanca en auge, de la mano de la innovación y la eficiencia. Electromarket. https://www.electromarket.com/uploads/2019/08/linea_blanca_auge_19618_20190801014454.pdf

Ullal, M. S., Hawaldar, I. T., Soni, R., & Nadeem, M. (2021). The Role of Machine Learning in Digital Marketing. SAGE Open, 11(4), 215824402110503. https://doi.org/10.1177/21582440211050394

Uribe, C. I., & Sabogal Neira, D. F. (2021). Marketing digital en micro y pequeñas empresas de publicidad de Bogotá. Revista Universidad y Empresa, 23(40). https://doi.org/10.12804/revistas.urosario.edu.co/empresa/a.8730

Ye, G., & Zhao, X. (2018). Improved SVD algorithm based on Slope One. Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, 1, 1002–1006. https://doi.org/10.1109/CCDC.2018.8407276

Zhang, F., Qi, S., Liu, Q., Mao, M., & Zeng, A. (2020). Alleviating the data sparsity problem of recommender systems by clustering nodes in bipartite networks. Expert Systems with Applications, 149, 113346. https://doi.org/10.1016/j.eswa.2020.113346

RCSI

Publicado

2023-07-10

Cómo citar

Guevara-Fernandez, A., & Coral-Ygnacio, M. A. (2023). Sistema de recomendación de artículos de línea blanca basado en el algoritmo KNN. Revista Científica De Sistemas E Informática, 3(2), e557. https://doi.org/10.51252/rcsi.v3i2.557